Nonlinear maps preserving the reduced minimum modulus of operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

Maps preserving general means of positive operators

Under some mild conditions, the general form of bijective transformations of the set of all positive linear operators on a Hilbert space which preserve a symmetric mean in the sense of Kubo-Ando theory is described.

متن کامل

Maps on positive operators preserving Lebesgue decompositions

Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...

متن کامل

Fidelity Preserving Maps on Density Operators

We prove that any bijective fidelity preserving transformation on the set of all density operators on a Hilbert space is implemented by an either unitary or antiunitary operator on the underlying Hilbert space. Let H be a Hilbert space. The set of all density operators on H, that is, the set of all positive self-adjoint operators on H with finite trace is denoted by C 1 (H). (We note that one m...

متن کامل

Ela Maps on Positive Operators Preserving

Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.12.010