Nonlinear maps preserving the reduced minimum modulus of operators
نویسندگان
چکیده
منابع مشابه
Additive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملMaps preserving general means of positive operators
Under some mild conditions, the general form of bijective transformations of the set of all positive linear operators on a Hilbert space which preserve a symmetric mean in the sense of Kubo-Ando theory is described.
متن کاملMaps on positive operators preserving Lebesgue decompositions
Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...
متن کاملFidelity Preserving Maps on Density Operators
We prove that any bijective fidelity preserving transformation on the set of all density operators on a Hilbert space is implemented by an either unitary or antiunitary operator on the underlying Hilbert space. Let H be a Hilbert space. The set of all density operators on H, that is, the set of all positive self-adjoint operators on H with finite trace is denoted by C 1 (H). (We note that one m...
متن کاملEla Maps on Positive Operators Preserving
Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2015.12.010